Copied to
clipboard

G = C4224D14order 448 = 26·7

24th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4224D14, C14.1382+ 1+4, C4⋊C434D14, (C4×D28)⋊14C2, (C4×C28)⋊8C22, C422C23D7, C42⋊D76C2, D28⋊C440C2, D14⋊C463C22, D142Q840C2, D14⋊Q841C2, C22⋊D28.3C2, C4⋊Dic762C22, C22⋊C4.77D14, D14.26(C4○D4), D14.5D439C2, D14.D449C2, (C2×C14).249C24, (C2×C28).603C23, Dic7⋊C468C22, (C4×Dic7)⋊58C22, C2.63(D48D14), C23.55(C22×D7), Dic7.D445C2, C79(C22.45C24), (C2×Dic14)⋊33C22, (C2×D28).226C22, C23.D1445C2, (C22×C14).63C23, (C23×D7).69C22, C22.270(C23×D7), C23.D7.65C22, (C2×Dic7).129C23, (C22×D7).223C23, C2.96(D7×C4○D4), (C2×C4×D7)⋊53C22, C4⋊C47D739C2, (C7×C4⋊C4)⋊33C22, (D7×C22⋊C4)⋊21C2, (C7×C422C2)⋊4C2, C14.207(C2×C4○D4), (C2×C4).86(C22×D7), (C2×C7⋊D4).69C22, (C7×C22⋊C4).74C22, SmallGroup(448,1158)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4224D14
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — C4224D14
C7C2×C14 — C4224D14
C1C22C422C2

Generators and relations for C4224D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1b2, cbc-1=a2b, dbd=a2b-1, dcd=c-1 >

Subgroups: 1324 in 248 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C4.4D4, C422C2, C422C2, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×D7, C22×C14, C22.45C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, C2×C7⋊D4, C23×D7, C42⋊D7, C4×D28, C23.D14, D7×C22⋊C4, C22⋊D28, D14.D4, Dic7.D4, C4⋊C47D7, D28⋊C4, D14.5D4, D14⋊Q8, D142Q8, C7×C422C2, C4224D14
Quotients: C1, C2, C22, C23, D7, C4○D4, C24, D14, C2×C4○D4, 2+ 1+4, C22×D7, C22.45C24, C23×D7, D7×C4○D4, D48D14, C4224D14

Smallest permutation representation of C4224D14
On 112 points
Generators in S112
(1 75 12 61)(2 83 13 69)(3 77 14 63)(4 71 8 57)(5 79 9 65)(6 73 10 59)(7 81 11 67)(15 78 28 64)(16 72 22 58)(17 80 23 66)(18 74 24 60)(19 82 25 68)(20 76 26 62)(21 84 27 70)(29 86 36 111)(30 105 37 94)(31 88 38 99)(32 107 39 96)(33 90 40 101)(34 109 41 98)(35 92 42 103)(43 91 50 102)(44 110 51 85)(45 93 52 104)(46 112 53 87)(47 95 54 106)(48 100 55 89)(49 97 56 108)
(1 51 25 35)(2 45 26 29)(3 53 27 37)(4 47 28 31)(5 55 22 39)(6 49 23 33)(7 43 24 41)(8 54 15 38)(9 48 16 32)(10 56 17 40)(11 50 18 34)(12 44 19 42)(13 52 20 36)(14 46 21 30)(57 106 78 99)(58 96 79 89)(59 108 80 101)(60 98 81 91)(61 110 82 103)(62 86 83 93)(63 112 84 105)(64 88 71 95)(65 100 72 107)(66 90 73 97)(67 102 74 109)(68 92 75 85)(69 104 76 111)(70 94 77 87)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(9 14)(10 13)(11 12)(16 21)(17 20)(18 19)(22 27)(23 26)(24 25)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)(57 64)(58 63)(59 62)(60 61)(65 70)(66 69)(67 68)(71 78)(72 77)(73 76)(74 75)(79 84)(80 83)(81 82)(85 91)(86 90)(87 89)(92 98)(93 97)(94 96)(100 112)(101 111)(102 110)(103 109)(104 108)(105 107)

G:=sub<Sym(112)| (1,75,12,61)(2,83,13,69)(3,77,14,63)(4,71,8,57)(5,79,9,65)(6,73,10,59)(7,81,11,67)(15,78,28,64)(16,72,22,58)(17,80,23,66)(18,74,24,60)(19,82,25,68)(20,76,26,62)(21,84,27,70)(29,86,36,111)(30,105,37,94)(31,88,38,99)(32,107,39,96)(33,90,40,101)(34,109,41,98)(35,92,42,103)(43,91,50,102)(44,110,51,85)(45,93,52,104)(46,112,53,87)(47,95,54,106)(48,100,55,89)(49,97,56,108), (1,51,25,35)(2,45,26,29)(3,53,27,37)(4,47,28,31)(5,55,22,39)(6,49,23,33)(7,43,24,41)(8,54,15,38)(9,48,16,32)(10,56,17,40)(11,50,18,34)(12,44,19,42)(13,52,20,36)(14,46,21,30)(57,106,78,99)(58,96,79,89)(59,108,80,101)(60,98,81,91)(61,110,82,103)(62,86,83,93)(63,112,84,105)(64,88,71,95)(65,100,72,107)(66,90,73,97)(67,102,74,109)(68,92,75,85)(69,104,76,111)(70,94,77,87), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(22,27)(23,26)(24,25)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(57,64)(58,63)(59,62)(60,61)(65,70)(66,69)(67,68)(71,78)(72,77)(73,76)(74,75)(79,84)(80,83)(81,82)(85,91)(86,90)(87,89)(92,98)(93,97)(94,96)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)>;

G:=Group( (1,75,12,61)(2,83,13,69)(3,77,14,63)(4,71,8,57)(5,79,9,65)(6,73,10,59)(7,81,11,67)(15,78,28,64)(16,72,22,58)(17,80,23,66)(18,74,24,60)(19,82,25,68)(20,76,26,62)(21,84,27,70)(29,86,36,111)(30,105,37,94)(31,88,38,99)(32,107,39,96)(33,90,40,101)(34,109,41,98)(35,92,42,103)(43,91,50,102)(44,110,51,85)(45,93,52,104)(46,112,53,87)(47,95,54,106)(48,100,55,89)(49,97,56,108), (1,51,25,35)(2,45,26,29)(3,53,27,37)(4,47,28,31)(5,55,22,39)(6,49,23,33)(7,43,24,41)(8,54,15,38)(9,48,16,32)(10,56,17,40)(11,50,18,34)(12,44,19,42)(13,52,20,36)(14,46,21,30)(57,106,78,99)(58,96,79,89)(59,108,80,101)(60,98,81,91)(61,110,82,103)(62,86,83,93)(63,112,84,105)(64,88,71,95)(65,100,72,107)(66,90,73,97)(67,102,74,109)(68,92,75,85)(69,104,76,111)(70,94,77,87), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(22,27)(23,26)(24,25)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(57,64)(58,63)(59,62)(60,61)(65,70)(66,69)(67,68)(71,78)(72,77)(73,76)(74,75)(79,84)(80,83)(81,82)(85,91)(86,90)(87,89)(92,98)(93,97)(94,96)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107) );

G=PermutationGroup([[(1,75,12,61),(2,83,13,69),(3,77,14,63),(4,71,8,57),(5,79,9,65),(6,73,10,59),(7,81,11,67),(15,78,28,64),(16,72,22,58),(17,80,23,66),(18,74,24,60),(19,82,25,68),(20,76,26,62),(21,84,27,70),(29,86,36,111),(30,105,37,94),(31,88,38,99),(32,107,39,96),(33,90,40,101),(34,109,41,98),(35,92,42,103),(43,91,50,102),(44,110,51,85),(45,93,52,104),(46,112,53,87),(47,95,54,106),(48,100,55,89),(49,97,56,108)], [(1,51,25,35),(2,45,26,29),(3,53,27,37),(4,47,28,31),(5,55,22,39),(6,49,23,33),(7,43,24,41),(8,54,15,38),(9,48,16,32),(10,56,17,40),(11,50,18,34),(12,44,19,42),(13,52,20,36),(14,46,21,30),(57,106,78,99),(58,96,79,89),(59,108,80,101),(60,98,81,91),(61,110,82,103),(62,86,83,93),(63,112,84,105),(64,88,71,95),(65,100,72,107),(66,90,73,97),(67,102,74,109),(68,92,75,85),(69,104,76,111),(70,94,77,87)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(9,14),(10,13),(11,12),(16,21),(17,20),(18,19),(22,27),(23,26),(24,25),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43),(57,64),(58,63),(59,62),(60,61),(65,70),(66,69),(67,68),(71,78),(72,77),(73,76),(74,75),(79,84),(80,83),(81,82),(85,91),(86,90),(87,89),(92,98),(93,97),(94,96),(100,112),(101,111),(102,110),(103,109),(104,108),(105,107)]])

67 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O7A7B7C14A···14I14J14K14L28A···28R28S···28AA
order122222222244444444444444477714···1414141428···2828···28
size11114141414142822224444141414142828282222···28884···48···8

67 irreducible representations

dim1111111111111122222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4D14D14D142+ 1+4D7×C4○D4D48D14
kernelC4224D14C42⋊D7C4×D28C23.D14D7×C22⋊C4C22⋊D28D14.D4Dic7.D4C4⋊C47D7D28⋊C4D14.5D4D14⋊Q8D142Q8C7×C422C2C422C2D14C42C22⋊C4C4⋊C4C14C2C2
# reps11112111112111383991126

Matrix representation of C4224D14 in GL6(𝔽29)

0120000
1200000
001000
000100
0000170
0000017
,
010000
100000
001000
000100
000001
0000280
,
100000
0280000
004400
00251800
000010
0000028
,
100000
0280000
004400
00182500
000010
000001

G:=sub<GL(6,GF(29))| [0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,17,0,0,0,0,0,0,17],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,28,0,0,0,0,1,0],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,4,25,0,0,0,0,4,18,0,0,0,0,0,0,1,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,4,18,0,0,0,0,4,25,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C4224D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{24}D_{14}
% in TeX

G:=Group("C4^2:24D14");
// GroupNames label

G:=SmallGroup(448,1158);
// by ID

G=gap.SmallGroup(448,1158);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,184,1571,570,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽